Using Machine Learning to Identify Feelings of Energy and Fatigue in Single-Task Walking Gait: An Exploratory Study

The objective of this study was to use machine learning to identify feelings of energy and fatigue using single-task walking gait. Participants (n = 126) were recruited from a university community and completed a single protocol where current feelings of energy and fatigue were measured using the Pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2022-03, Vol.12 (6), p.3083
Hauptverfasser: Kadry, Ahmed M., Torad, Ahmed, Elwan, Moustafa Ali, Kakar, Rumit Singh, Bradley, Dylan, Chaudhry, Shafique, Boolani, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this study was to use machine learning to identify feelings of energy and fatigue using single-task walking gait. Participants (n = 126) were recruited from a university community and completed a single protocol where current feelings of energy and fatigue were measured using the Profile of Moods Survey–Short Form approximately 2 min prior to participants completing a two-minute walk around a 6 m track wearing APDM mobility monitors. Gait parameters for upper and lower extremity, neck, lumbar and trunk movement were collected. Gradient boosting classifiers were the most accurate classifiers for both feelings of energy (74.3%) and fatigue (74.2%) and Random Forest Regressors were the most accurate regressors for both energy (0.005) and fatigue (0.007). ANCOVA analyses of gait parameters comparing individuals who were high or low energy or fatigue suggest that individuals who are low energy have significantly greater errors in walking gait compared to those who are high energy. Individuals who are high fatigue have more symmetrical gait patterns and have trouble turning when compared to their low fatigue counterparts. Furthermore, these findings support the need to assess energy and fatigue as two distinct unipolar moods as the signals used by the algorithms were unique to each mood.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12063083