Arbitrary linear transformations for photons in the frequency synthetic dimension
Arbitrary linear transformations are of crucial importance in a plethora of photonic applications spanning classical signal processing, communication systems, quantum information processing and machine learning. Here, we present a photonic architecture to achieve arbitrary linear transformations by...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-04, Vol.12 (1), p.2401-2401, Article 2401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arbitrary linear transformations are of crucial importance in a plethora of photonic applications spanning classical signal processing, communication systems, quantum information processing and machine learning. Here, we present a photonic architecture to achieve arbitrary linear transformations by harnessing the synthetic frequency dimension of photons. Our structure consists of dynamically modulated micro-ring resonators that implement tunable couplings between multiple frequency modes carried by a single waveguide. By inverse design of these short- and long-range couplings using automatic differentiation, we realize arbitrary scattering matrices in synthetic space between the input and output frequency modes with near-unity fidelity and favorable scaling. We show that the same physical structure can be reconfigured to implement a wide variety of manipulations including single-frequency conversion, nonreciprocal frequency translations, and unitary as well as non-unitary transformations. Our approach enables compact, scalable and reconfigurable integrated photonic architectures to achieve arbitrary linear transformations in both the classical and quantum domains using current state-of-the-art technology.
Photonic processors that can perform arbitrary tasks are in demand for many applications. Here, the authors present a photonic architecture using waveguide and resonator couplings to perform arbitrary linear transformations, by taking advantage of the frequency synthetic dimension. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-021-22670-7 |