Transimpedance Amplifier for Noise Measurements in Low-Resistance IR Photodetectors

This paper presents the design and testing of an ultra-low-noise transimpedance amplifier (TIA) for low-frequency noise measurements on low-impedance (below 1 kΩ) devices, such as advanced IR photodetectors. When dealing with low-impedance devices, the main source of background noise in transimpedan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2023-09, Vol.13 (17), p.9964
Hauptverfasser: Achtenberg, Krzysztof, Scandurra, Graziella, Mikołajczyk, Janusz, Ciofi, Carmine, Bielecki, Zbigniew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the design and testing of an ultra-low-noise transimpedance amplifier (TIA) for low-frequency noise measurements on low-impedance (below 1 kΩ) devices, such as advanced IR photodetectors. When dealing with low-impedance devices, the main source of background noise in transimpedance amplifiers comes from the equivalent input voltage noise of the operational amplifier, which is used in a shunt–shunt configuration to obtain a transimpedance stage. In our design, we employ a hybrid operational amplifier in which an input front end based on ultra-low-noise discrete JFET devices is used to minimize this noise contribution. When using IF3602 JFETs for the input stage, the equivalent voltage noise of the hybrid operational amplifier can be as low as 4 nV/√Hz, 2 nV/√Hz, and 0.9 nV/√Hz at 1 Hz, 10 Hz, and 1 kHz, respectively. When testing the current noise of an ideal 1 kΩ resistor, these values correspond to a current noise contribution of the same order as or below that of the thermal noise of the resistor. Therefore, in cases in which the current flicker noise is dominant, i.e., much higher than the thermal noise, the noise contribution from the transimpedance amplifier can be neglected in most cases of interest. Test measurements on advanced low-impedance photodetectors are also reported to demonstrate the effectiveness of our proposed approach for directly measuring low-frequency current noise in biased low-impedance electronic devices.
ISSN:2076-3417
2076-3417
DOI:10.3390/app13179964