Time Reduction for SLM OFDM PAPR Based on Adaptive Genetic Algorithm in 5G IoT Networks

In this paper, a new peak average power and time reduction (PAPTR) based on the adaptive genetic algorithm (AGA) strategy is used in order to improve both the time reduction and PAPR value reduction for the SLM OFDM and the conventional genetic algorithm (GA) SLM-OFDM. The simulation results demonst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-11, Vol.23 (23), p.9310
Hauptverfasser: Hagras, Esam A A, F Desouky, Sameh, Aldosary, Saad, Khaled, Haitham, Hassan, Tarek M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new peak average power and time reduction (PAPTR) based on the adaptive genetic algorithm (AGA) strategy is used in order to improve both the time reduction and PAPR value reduction for the SLM OFDM and the conventional genetic algorithm (GA) SLM-OFDM. The simulation results demonstrate that the recommended AGA technique reduces PAPR by about 3.87 dB in comparison to SLM-OFDM. Comparing the suggested AGA SLM-OFDM to the traditional GA SLM-OFDM using the same settings, a significant learning time reduction of roughly 95.56% is achieved. The PAPR of the proposed AGA SLM-OFDM is enhanced by around 3.87 dB in comparison to traditional OFDM. Also, the PAPR of the proposed AGA SLM-OFDM is roughly 0.12 dB worse than that of the conventional GA SLM-OFDM.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23239310