On the existence results for a class of singular elliptic system involving indefinite weight functions and asymptotically linear growth forcing term
In this work, we study the existence of positive solutions to the singular system$$\left\{\begin{array}{ll}-\Delta_{p}u = \lambda a(x)f(v)-u^{-\alpha} & \textrm{ in }\Omega,\\-\Delta_{p}v = \lambda b(x)g(u)-v^{-\alpha} & \textrm{ in }\Omega,\\u = v= 0 & \textrm{ on }\partial \Omega,\end{...
Gespeichert in:
Veröffentlicht in: | Boletim da Sociedade Paranaense de Matemática 2019-07, Vol.37 (3), p.67-74 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we study the existence of positive solutions to the singular system$$\left\{\begin{array}{ll}-\Delta_{p}u = \lambda a(x)f(v)-u^{-\alpha} & \textrm{ in }\Omega,\\-\Delta_{p}v = \lambda b(x)g(u)-v^{-\alpha} & \textrm{ in }\Omega,\\u = v= 0 & \textrm{ on }\partial \Omega,\end{array}\right.$$where $\lambda $ is positive parameter, $\Delta_{p}u=\textrm{div}(|\nabla u|^{p-2} \nabla u)$, $p>1$, $ \Omega \subset R^{n} $ some for $ n >1 $, is a bounded domain with smooth boundary $\partial \Omega $ , $ 0 |
---|---|
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v37i3.31983 |