Power Generation from a Hybrid Generator (TENG-EMG) Run by a Thermomagnetic Engine Harnessing Low Temperature Waste Heat
This work explored the scavenging of low temperature waste heat and conversion of it into electrical energy through the operation of a gadolinium (Gd) based thermomagnetic engine. Gd is one of the unique materials whose magnetic property changes from ferromagnetic to paramagnetic depending on the te...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2019-05, Vol.12 (9), p.1774 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work explored the scavenging of low temperature waste heat and conversion of it into electrical energy through the operation of a gadolinium (Gd) based thermomagnetic engine. Gd is one of the unique materials whose magnetic property changes from ferromagnetic to paramagnetic depending on the temperature (“the Curie temperature”), which is around 20 °C. In the present work, two different types of generators were designed and applied to the rotating shaft of a Gd-based thermomagnetic engine developed for low temperature differential (LTD) applications. Of these, one is the so-called triboelectric nanogenerator (TENG), and the other is the electromagnetic generator (EMG). These have been designed to produce electricity from the rotating shaft of the thermomagnetic engine, exploiting both the electromagnetic and triboelectric effects. When operated at a rotational speed of 251 rpm with a temperature difference of 45 °C between the hot and cold water jets, the hybrid (TENG-EMG) generator produced a combined pulsating DC open circuit voltage of 5 V and a short circuit current of 0.7 mA. The hybrid generator effectively produced a maximum output power of 0.75 mW at a loading resistance of 10 kΩ. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en12091774 |