Prediction and Utilization of Malondialdehyde in Exotic Pine Under Drought Stress Using Near-Infrared Spectroscopy

Drought is a major abiotic stress that adversely affects the growth and productivity of plants. Malondialdehyde (MDA), a substance produced by membrane lipids in response to reactive oxygen species (ROS), can be used as a drought indicator to evaluate the degree of plasma membrane damage and the abi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2021-10, Vol.12, p.735275-735275
Hauptverfasser: Zhang, Yini, Luan, Qifu, Jiang, Jingmin, Li, Yanjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drought is a major abiotic stress that adversely affects the growth and productivity of plants. Malondialdehyde (MDA), a substance produced by membrane lipids in response to reactive oxygen species (ROS), can be used as a drought indicator to evaluate the degree of plasma membrane damage and the ability of plants to drought stress tolerance. Still measuring MDA is usually a labor- and time-consuming task. In this study, near-infrared (NIR) spectroscopy combined with partial least squares (PLS) was used to obtain rapid and high-throughput measurements of MDA, and the application of this technique to plant drought stress experiments was also investigated. Two exotic conifer tree species, namely, slash pine ( Pinus elliottii ) and loblolly pine ( Pinus taeda ), were used as plant material exposed to drought stress; different types of spectral preprocessing methods and important feature-selection algorithms were applied to the PLS model to calibrate it and obtain the best MDA-predicting model. The results show that the best PLS model is established via the combined treatment of detrended variable–significant multivariate correlation algorithm (DET-sMC), where latent variables (LVs) were 6. This model has a respectable predictive capability, with a correlation coefficient ( R 2 ) of 0.66, a root mean square error (RMSE) of 2.28%, and a residual prediction deviation (RPD) of 1.51, and it was successfully implemented in drought stress experiments as a reliable and non-destructive method to detect the MDA content in real time.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2021.735275