Sleep fMRI with simultaneous electrophysiology at 9.4 T in male mice
Sleep is ubiquitous and essential, but its mechanisms remain unclear. Studies in animals and humans have provided insights of sleep at vastly different spatiotemporal scales. However, challenges remain to integrate local and global information of sleep. Therefore, we developed sleep fMRI based on si...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-03, Vol.14 (1), p.1651-1651, Article 1651 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sleep is ubiquitous and essential, but its mechanisms remain unclear. Studies in animals and humans have provided insights of sleep at vastly different spatiotemporal scales. However, challenges remain to integrate local and global information of sleep. Therefore, we developed sleep fMRI based on simultaneous electrophysiology at 9.4 T in male mice. Optimized un-anesthetized mouse fMRI setup allowed manifestation of NREM and REM sleep, and a large sleep fMRI dataset was collected and openly accessible. State dependent global patterns were revealed, and state transitions were found to be global, asymmetrical and sequential, which can be predicted up to 17.8 s using LSTM models. Importantly, sleep fMRI with hippocampal recording revealed potentiated sharp-wave ripple triggered global patterns during NREM than awake state, potentially attributable to co-occurrence of spindle events. To conclude, we established mouse sleep fMRI with simultaneous electrophysiology, and demonstrated its capability by revealing global dynamics of state transitions and neural events.
Mechanisms of sleep remain elusive. Here, authors developed mouse sleep fMRI based on simultaneous electrophysiology and mapped global and sequential state transition patterns, together with global patterns triggered by SWRs in NREM and awake states. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-37352-9 |