Rashba-splitting-induced topological flat band detected by anomalous resistance oscillations beyond the quantum limit in ZrTe5

Topological flat bands — where the kinetic energy of electrons is quenched — provide a platform for investigating the topological properties of correlated systems. Here, we report the observation of a topological flat band formed by polar-distortion-assisted Rashba splitting in the three-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-05, Vol.15 (1), p.4407-4407, Article 4407
Hauptverfasser: Xing, Dong, Tong, Bingbing, Pan, Senyang, Wang, Zezhi, Luo, Jianlin, Zhang, Jinglei, Zhang, Cheng-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological flat bands — where the kinetic energy of electrons is quenched — provide a platform for investigating the topological properties of correlated systems. Here, we report the observation of a topological flat band formed by polar-distortion-assisted Rashba splitting in the three-dimensional Dirac material ZrTe 5 . The polar distortion and resulting Rashba splitting on the band are directly detected by torque magnetometry and the anomalous Hall effect, respectively. The local symmetry breaking further flattens the band, on which we observe resistance oscillations beyond the quantum limit. These oscillations follow the temperature dependence of the Lifshitz–Kosevich formula but are evenly distributed in B instead of 1/B at high magnetic fields. Furthermore, the cyclotron mass gets anomalously enhanced about 10 2 times at fields ~ 20 T. Our results provide an intrinsic platform without invoking moiré or order-stacking engineering, which opens the door for studying topologically correlated phenomena beyond two dimensions. Topological flat bands offer a solid-state platform for studying the interplay between topology and electron correlations. Here, the authors demonstrate that a prototypical 3D Dirac material can host topological flat bands under magnetic fields due to polar-distortion-assisted Rashba splitting.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-48761-9