Analysing corpus-based criterial conjunctions for automatic proficiency classification
The linguistic profiling of L2 learning texts can be taken as a model for automatic proficiency assessment of new texts. But proficiency levels are distinguished by many different linguistic features among which the use of cohesive devices can be a criterial element for level distinctions, either in...
Gespeichert in:
Veröffentlicht in: | Journal of English studies (Logroño) 2016, Vol.14 (14), p.215-237 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The linguistic profiling of L2 learning texts can be taken as a model for automatic proficiency assessment of new texts. But proficiency levels are distinguished by many different linguistic features among which the use of cohesive devices can be a criterial element for level distinctions, either in the number of conjunctions used (quantitative) and/or in the type and variety of them (qualitative). We have carried such an analysis with a subgroup of the CLEC (CEFR-levelled English Corpus) using Coh-Metrix, a tool for computing computational cohesion and coherence metrics for written and spoken texts, but our results suggest that automatic proficiency level assessment needs a deeper examination of conjunctions that should rely on the analysis of conjunction-types use and conjunction varieties, with an analysis of lexical choice. A variable based on familiarity ranks could help to predict cohesive levels proficiencyoriented. |
---|---|
ISSN: | 1576-6357 1695-4300 |
DOI: | 10.18172/jes.3090 |