Intravital Imaging to Monitor Therapeutic Response in Moving Hypoxic Regions Resistant to PI3K Pathway Targeting in Pancreatic Cancer
Application of advanced intravital imaging facilitates dynamic monitoring of pathway activity upon therapeutic inhibition. Here, we assess resistance to therapeutic inhibition of the PI3K pathway within the hypoxic microenvironment of pancreatic ductal adenocarcinoma (PDAC) and identify a phenomenon...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2018-06, Vol.23 (11), p.3312-3326 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Application of advanced intravital imaging facilitates dynamic monitoring of pathway activity upon therapeutic inhibition. Here, we assess resistance to therapeutic inhibition of the PI3K pathway within the hypoxic microenvironment of pancreatic ductal adenocarcinoma (PDAC) and identify a phenomenon whereby pronounced hypoxia-induced resistance is observed for three clinically relevant inhibitors. To address this clinical problem, we have mapped tumor hypoxia by both immunofluorescence and phosphorescence lifetime imaging of oxygen-sensitive nanoparticles and demonstrate that these hypoxic regions move transiently around the tumor. To overlay this microenvironmental information with drug response, we applied a FRET biosensor for Akt activity, which is a key effector of the PI3K pathway. Performing dual intravital imaging of drug response in different tumor compartments, we demonstrate an improved drug response to a combination therapy using the dual mTORC1/2 inhibitor AZD2014 with the hypoxia-activated pro-drug TH-302.
[Display omitted]
•Hypoxia presents a moving pocket of resistance in pancreatic ductal adenocarcinoma.•Dual intravital imaging allows live tracking of drug response in hypoxic regions.•Combination with a hypoxia-activated pro-drug alleviates resistance.•This has implications for combatting resistance in a broad range of therapies.
Intravital imaging facilitates the real-time tracking and targeting of moving hypoxic regions within pancreatic ductal adenocarcinoma. Using this approach, Conway et al. alleviate hypoxia-induced resistance to a dual mTORC1/2 inhibitor AZD2014, improving PI3K pathway inhibition and demonstrating a powerful dual imaging modality applicable to targeting other pathways and cancers. |
---|---|
ISSN: | 2211-1247 2211-1247 |
DOI: | 10.1016/j.celrep.2018.05.038 |