Functionally specialized human CD4 + T-cell subsets express physicochemically distinct TCRs
The organizational integrity of the adaptive immune system is determined by functionally discrete subsets of CD4 T cells, but it has remained unclear to what extent lineage choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we used a high-throughput appr...
Gespeichert in:
Veröffentlicht in: | eLife 2020-12, Vol.9 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The organizational integrity of the adaptive immune system is determined by functionally discrete subsets of CD4
T cells, but it has remained unclear to what extent lineage choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we used a high-throughput approach to profile the αβ TCR repertoires of human naive and effector/memory CD4
T-cell subsets, irrespective of antigen specificity. Highly conserved physicochemical and recombinatorial features were encoded on a subset-specific basis in the effector/memory compartment. Clonal tracking further identified forbidden and permitted transition pathways, mapping effector/memory subsets related by interconversion or ontogeny. Public sequences were largely confined to particular effector/memory subsets, including regulatory T cells (Tregs), which also displayed hardwired repertoire features in the naive compartment. Accordingly, these cumulative repertoire portraits establish a link between clonotype fate decisions in the complex world of CD4
T cells and the intrinsic properties of somatically rearranged TCRs. |
---|---|
ISSN: | 2050-084X 2050-084X |
DOI: | 10.7554/eLife.57063 |