Similarity of stream width distributions across headwater systems

The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-02, Vol.9 (1), p.610-7, Article 610
Hauptverfasser: Allen, George H., Pavelsky, Tamlin M., Barefoot, Eric A., Lamb, Michael P., Butman, David, Tashie, Arik, Gleason, Colin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater, and the atmosphere. In large river systems, the relationship between river width and abundance is fractal, such that narrow rivers are proportionally more common than wider rivers. However, in headwater systems, where many biogeochemical reactions are most rapid, the relationship between stream width and abundance is unknown. To constrain this uncertainty, we surveyed stream hydromorphology (wetted width and length) in several headwater stream networks across North America and New Zealand. Here, we find a strikingly consistent lognormal statistical distribution of stream width, including a characteristic most abundant stream width of 32 ± 7 cm independent of discharge or physiographic conditions. We propose a hydromorphic model that can be used to more accurately estimate the hydromorphology of streams, with significant impact on the understanding of the hydraulic, ecological, and biogeochemical functions of stream networks. The morphology and abundance of streams control the rates of hydraulic and biogeochemical exchange between streams, groundwater and the atmosphere. Here, the authors show that stream hydromorphology is predictable within headwater catchments with implications for stream-atmosphere gas exchange estimates.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-02991-w