Discovery of the major 15–30 nt mammalian small RNAs, their biogenesis and function
Small RNAs (sRNAs) within 15-30 nt such as miRNA, tsRNA, srRNA with 3’-OH have been identified. However, whether these sRNAs are the major 15-30 nt sRNAs is still unknown. Here we show about 90% mammalian sRNAs within 15-30 nt end with 2’,3’-cyclic phosphate (3’-cP). TANT-seq was developed to simult...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-09, Vol.14 (1), p.5796-5796, Article 5796 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Small RNAs (sRNAs) within 15-30 nt such as miRNA, tsRNA, srRNA with 3’-OH have been identified. However, whether these sRNAs are the major 15-30 nt sRNAs is still unknown. Here we show about 90% mammalian sRNAs within 15-30 nt end with 2’,3’-cyclic phosphate (3’-cP). TANT-seq was developed to simultaneously profile sRNAs with 3’-cP (sRNA-cPs) and sRNA-OHs, and huge amount of sRNA-cPs were detected. Surprisingly, sRNA-cPs and sRNA-OHs usually have distinct sequences. The data from TANT-seq were validated by a novel method termed TE-qPCR, and Northern blot. Furthermore, we found that Angiogenin and RNase 4 contribute to the biogenesis of sRNA-cPs. Moreover, much more sRNA-cPs than sRNA-OHs bind to Ago2, and can regulate gene expression. Particularly, snR-2-cP regulates Bcl2 by targeting to its 3’UTR dependent on Ago2, and subsequently regulates apoptosis. In addition, sRNA-cPs can guide the cleavage of target RNAs in Ago2 complex as miRNAs without the requirement of 3’-cP. Our discovery greatly expands the repertoire of mammalian sRNAs, and provides strategies and powerful tools towards further investigation of sRNA-cPs.
The authors uncover the major 15-30 nt mouse and human small RNAs (sRNAs), which mainly end with 2’,3’-cyclic phosphate, and show that many of these sRNAs can be generated by Angiogenin or RNase 4 and function in Ago2 complex as miRNAs. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-41554-6 |