Global Carbon Budget 2020
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate polic...
Gespeichert in:
Veröffentlicht in: | Earth system science data 2020-12, Vol.12 (4), p.3269-3340 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and
their redistribution among the atmosphere, ocean, and terrestrial biosphere
in a changing climate – the “global carbon budget” – is important to
better understand the global carbon cycle, support the development of
climate policies, and project future climate change. Here we describe and
synthesize data sets and methodology to quantify the five major components
of the global carbon budget and their uncertainties. Fossil CO2
emissions (EFOS) are based on energy statistics and cement production
data, while emissions from land-use change (ELUC), mainly
deforestation, are based on land use and land-use change data and
bookkeeping models. Atmospheric CO2 concentration is measured directly
and its growth rate (GATM) is computed from the annual changes in
concentration. The ocean CO2 sink (SOCEAN) and terrestrial
CO2 sink (SLAND) are estimated with global process models
constrained by observations. The resulting carbon budget imbalance
(BIM), the difference between the estimated total emissions and the
estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a
measure of imperfect data and understanding of the contemporary carbon
cycle. All uncertainties are reported as ±1σ. For the last
decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and
ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget
imbalance BIM of −0.1 GtC yr−1 indicating a near balance between
estimated sources and sinks over the last decade. For the year 2019 alone, the
growth in EFOS was only about 0.1 % with fossil emissions increasing
to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was
5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN
was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2
concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary
data for 2020, accounting for the COVID-19-induced changes in emissions,
suggest a decrease in EFOS relative to 2019 of about −7 % (median
estimate) based on individual |
---|---|
ISSN: | 1866-3516 1866-3508 1866-3516 |
DOI: | 10.5194/essd-12-3269-2020 |