Global Carbon Budget 2020

Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate polic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth system science data 2020-12, Vol.12 (4), p.3269-3340
Hauptverfasser: Friedlingstein, Pierre, O'Sullivan, Michael, Jones, Matthew W, Andrew, Robbie M, Hauck, Judith, Olsen, Are, Peters, Glen P, Peters, Wouter, Pongratz, Julia, Sitch, Stephen, Le Quéré, Corinne, Canadell, Josep G, Ciais, Philippe, Jackson, Robert B, Alin, Simone, Aragão, Luiz E. O. C, Arneth, Almut, Arora, Vivek, Bates, Nicholas R, Becker, Meike, Benoit-Cattin, Alice, Bittig, Henry C, Bopp, Laurent, Bultan, Selma, Chandra, Naveen, Chevallier, Frédéric, Chini, Louise P, Evans, Wiley, Florentie, Liesbeth, Forster, Piers M, Gasser, Thomas, Gehlen, Marion, Gilfillan, Dennis, Gkritzalis, Thanos, Gregor, Luke, Gruber, Nicolas, Harris, Ian, Hartung, Kerstin, Haverd, Vanessa, Houghton, Richard A, Ilyina, Tatiana, Jain, Atul K, Joetzjer, Emilie, Kadono, Koji, Kato, Etsushi, Kitidis, Vassilis, Korsbakken, Jan Ivar, Landschützer, Peter, Lefèvre, Nathalie, Lenton, Andrew, Lienert, Sebastian, Liu, Zhu, Lombardozzi, Danica, Marland, Gregg, Metzl, Nicolas, Munro, David R, Nabel, Julia E. M. S, Nakaoka, Shin-Ichiro, Niwa, Yosuke, O'Brien, Kevin, Ono, Tsuneo, Palmer, Paul I, Pierrot, Denis, Poulter, Benjamin, Resplandy, Laure, Robertson, Eddy, Rödenbeck, Christian, Schwinger, Jörg, Séférian, Roland, Skjelvan, Ingunn, Smith, Adam J. P, Sutton, Adrienne J, Tanhua, Toste, Tans, Pieter P, Tian, Hanqin, Tilbrook, Bronte, van der Werf, Guido, Vuichard, Nicolas, Walker, Anthony P, Wanninkhof, Rik, Watson, Andrew J, Willis, David, Wiltshire, Andrew J, Yuan, Wenping, Yue, Xu, Zaehle, Sönke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ±  0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual
ISSN:1866-3516
1866-3508
1866-3516
DOI:10.5194/essd-12-3269-2020