Modeling Topic Evolution in Twitter: An Embedding-Based Approach

In last two decades, online social networks have grown vertically as well as horizontally. Due to various users activities in these networks, huge amount of data, mainly textual, is being generated that can be analyzed at different levels of granularity for various purposes, including behavior analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018, Vol.6, p.64847-64857
Hauptverfasser: Abulaish, Muhammad, Fazil, Mohd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In last two decades, online social networks have grown vertically as well as horizontally. Due to various users activities in these networks, huge amount of data, mainly textual, is being generated that can be analyzed at different levels of granularity for various purposes, including behavior analysis, sentiment analysis, and predictive modeling. In this paper, we propose a word embedding-based approach to analyze users-centric tweets to observe their behavior evolution in terms of the topics discussed by them over a period of time. We also present a word embedding-based proximity measure to monitor temporal transitions between the topics using five topic evolution events- emergence , persistence , convergence , divergence , and extinction . The proximity between a pair of topics is defined as a function of the content and contextual similarity between their word distributions, wherein the contextual similarity is calculated using word embedding. The proposed approach is evaluated over three Twitter datasets in line with the existing state-of-the-art approaches in literature and the experimental results are encouraging.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2878494