Induction of Plant Resistance against Tobacco Mosaic Virus Using the Biocontrol Agent Streptomyces cellulosae Isolate Actino 48

Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol agents. In the current study, Streptomyces cellulosae isolate Actino 48 is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy (Basel) 2020-10, Vol.10 (11), p.1620
Hauptverfasser: Abo-Zaid, Gaber Attia, Matar, Saleh Mohamed, Abdelkhalek, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Viral plant diseases represent a serious problem in agricultural production, causing large shortages in the production of food crops. Eco-friendly approaches are used in controlling viral plant infections, such as biocontrol agents. In the current study, Streptomyces cellulosae isolate Actino 48 is tested as a biocontrol agent for the management of tobacco mosaic virus (TMV) and inducing tomato plant systemic resistance under greenhouse conditions. Foliar application of a cell pellet suspension of Actino 48 (2 × 107 cfu. mL−1) is performed at 48 h before inoculation with TMV. Peroxidase activity, chitinase activity, protein content, and the total phenolic compounds are measured in tomato leaves at 21 dpi. On the other hand, the TMV accumulation level and the transcriptional changes of five tomato defense-related genes (PAL, PR-1, CHS, PR-3, and PR-2) are studied. Treatment with Actino 48 before TMV inoculation (48 h) induced tomato plants to increase their levels of peroxidase and chitinase enzymes. Furthermore, a significant increase in the concentration of total phenolic compounds was observed in Actino 48 and TMV-treated tomato plants compared to TMV-treated tomato plants alone. Treatment with Actino 48 reduced the TMV accumulation level (53.8%) compared to treatment with the virus alone. Actino 48 induced plant growth, where the fresh and dry weights of tomato plants increased. Additionally, significant increases of the PAL, PR-1, CHS, and PR-3 transcripts were observed. On the other hand, a higher induction of PR-2 was only observed in TMV-treated tomato plants. In conclusion, S. cellulosae isolate Actino 48 can be used as a biocontrol agent for the reduction of symptoms and severity of TMV.
ISSN:2073-4395
2073-4395
DOI:10.3390/agronomy10111620