Understanding the Biosynthetic Changes that Give Origin to the Distinctive Flavor of Sotol: Microbial Identification and Analysis of the Volatile Metabolites Profiles During Sotol ( Dasylirion sp.) Must Fermentation

In northern Mexico, the distilled spirit sotol with a denomination of origin is made from species of . The configuration of the volatile metabolites produced during the spontaneous fermentation of sp. must is insufficiently understood. In this study, the aim was to investigate the composition of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomolecules (Basel, Switzerland) Switzerland), 2020-07, Vol.10 (7), p.1063
Hauptverfasser: Zavala-Díaz de la Serna, Francisco Javier, Contreras-López, Ricardo, Lerma-Torres, L Paola, Ruiz-Terán, Francisco, Rocha-Gutiérrez, Beatriz A, Pérez-Vega, Samuel B, Elías-Ogaz, Leslie R, Salmerón, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In northern Mexico, the distilled spirit sotol with a denomination of origin is made from species of . The configuration of the volatile metabolites produced during the spontaneous fermentation of sp. must is insufficiently understood. In this study, the aim was to investigate the composition of the microbial consortia, describe the variation of volatile metabolites, and relate such profiles with their particular flavor attributes during the fermentation of sotol ( sp.) must. Ascomycota was the phylum of most strains identified with 75% of total abundance. The genus of fermenting yeasts constituted of 101 Pichia strains and 13 Saccharomyces strains. A total of 57 volatile metabolites were identified and grouped into ten classes. The first stage of fermentation was composed of diesel, green, fruity, and cheesy attributes due to butyl 2-methylpropanoate, octan-1-ol, ethyl octanoate, and butanal, respectively, followed by a variation to pungent and sweet descriptors due to 3-methylbutan-1-ol and butyl 2-methylpropanoate. The final stage was described by floral, ethereal-winey, and vinegar attributes related to ethyl ethanimidate, 2-methylpropan-1-ol, and 2-hydroxyacetic acid. Our results improve the knowledge of the variations of volatile metabolites during the fermentation of sotol must and their contribution to its distinctive flavor.
ISSN:2218-273X
2218-273X
DOI:10.3390/biom10071063