Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET

Background Residual image noise is substantial in positron emission tomography (PET) and one of the factors limiting lesion detection, quantification, and overall image quality. Thus, improving noise reduction remains of considerable interest. This is especially true for respiratory-gated PET invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EJNMMI Physics 2024-07, Vol.11 (1), p.58-16, Article 58
Hauptverfasser: Maus, Jens, Nikulin, Pavel, Hofheinz, Frank, Petr, Jan, Braune, Anja, Kotzerke, Jörg, van den Hoff, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Residual image noise is substantial in positron emission tomography (PET) and one of the factors limiting lesion detection, quantification, and overall image quality. Thus, improving noise reduction remains of considerable interest. This is especially true for respiratory-gated PET investigations. The only broadly used approach for noise reduction in PET imaging has been the application of low-pass filters, usually Gaussians, which however leads to loss of spatial resolution and increased partial volume effects affecting detectability of small lesions and quantitative data evaluation. The bilateral filter (BF) — a locally adaptive image filter — allows to reduce image noise while preserving well defined object edges but manual optimization of the filter parameters for a given PET scan can be tedious and time-consuming, hampering its clinical use. In this work we have investigated to what extent a suitable deep learning based approach can resolve this issue by training a suitable network with the target of reproducing the results of manually adjusted case-specific bilateral filtering. Methods Altogether, 69 respiratory-gated clinical PET/CT scans with three different tracers ( [ 18 F ] FDG, [ 18 F ] L-DOPA, [ 68 Ga ] DOTATATE) were used for the present investigation. Prior to data processing, the gated data sets were split, resulting in a total of 552 single-gate image volumes. For each of these image volumes, four 3D ROIs were delineated: one ROI for image noise assessment and three ROIs for focal uptake (e.g. tumor lesions) measurements at different target/background contrast levels. An automated procedure was used to perform a brute force search of the two-dimensional BF parameter space for each data set to identify the “optimal” filter parameters to generate user-approved ground truth input data consisting of pairs of original and optimally BF filtered images. For reproducing the optimal BF filtering, we employed a modified 3D U-Net CNN incorporating residual learning principle. The network training and evaluation was performed using a 5-fold cross-validation scheme. The influence of filtering on lesion SUV quantification and image noise level was assessed by calculating absolute and fractional differences between the CNN, manual BF, or original (STD) data sets in the previously defined ROIs. Results The automated procedure used for filter parameter determination chose adequate filter parameters for the majority of the data sets with only 19
ISSN:2197-7364
2197-7364
DOI:10.1186/s40658-024-00661-z