Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points

Exceptional points and skin effect, as the two distinct hallmark features unique to the non-Hermitian physics, have each attracted enormous interests. Recent theoretical works reveal that the topologically nontrivial exceptional points can guarantee the non-Hermitian skin effect, which is geometry-d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2023-07, Vol.14 (1), p.4569-8, Article 4569
Hauptverfasser: Zhou, Qiuyan, Wu, Jien, Pu, Zhenhang, Lu, Jiuyang, Huang, Xueqin, Deng, Weiyin, Ke, Manzhu, Liu, Zhengyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Exceptional points and skin effect, as the two distinct hallmark features unique to the non-Hermitian physics, have each attracted enormous interests. Recent theoretical works reveal that the topologically nontrivial exceptional points can guarantee the non-Hermitian skin effect, which is geometry-dependent, relating these two unique phenomena. However, such novel relation remains to be confirmed by experiments. Here, we realize a non-Hermitian phononic crystal with exceptional points, which exhibits the geometry-dependent skin effect. The exceptional points connected by the bulk Fermi arcs, and the skin effects with the geometry dependence, are evidenced in simulations and experiments. Our work, building an experimental bridge between the exceptional points and skin effect and uncovering the unconventional geometry-dependent skin effect, expands a horizon in non-Hermitian physics. Recent theoretical works reveal that the topologically nontrivial exceptional points can guarantee the geometry-dependent skin effect, but it remains to be confirmed by experiments. Here the authors realize a reciprocal non-Hermitian phononic crystal with exceptional points, and observe the geometry-dependent skin effect.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-40236-7