Development of Wet Scavenging Process of Particles in Air Quality Modeling

This study presents an improved wet scavenging process for particles in air quality modeling, focusing on the Korean Peninsula. New equations were incorporated into the air quality chemical transport model (CTM) to enhance the simulation of particulate matter (PM) concentrations. The modified air qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere 2024-09, Vol.15 (9), p.1070
Hauptverfasser: Park, Da-Som, Choi, Yongjoo, Sunwoo, Young, Jung, Chang Hoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents an improved wet scavenging process for particles in air quality modeling, focusing on the Korean Peninsula. New equations were incorporated into the air quality chemical transport model (CTM) to enhance the simulation of particulate matter (PM) concentrations. The modified air quality CTM module, utilizing size-dependent scavenging formulas, was applied to simulate air quality for April 2018, a month characterized by significant precipitation. Results showed that the modified model produced more accurate predictions of PM10 and PM2.5 concentrations compared to the original air quality CTM model. The maximum monthly average differences were 5.46 µg/m3 for PM10 and 2.87 µg/m3 for PM2.5, with pronounced improvements in high-concentration regions. Time-series analyses for Seoul and Busan demonstrated better agreement between modeled and observed values. Spatial distribution comparisons revealed enhanced accuracy, particularly in metropolitan areas. This study highlights the importance of incorporating region-specific, size-dependent wet scavenging processes in air quality models. The improved model shows promise for more accurate air quality predictions, potentially benefiting environmental management and policy-making in the region. Future research should focus on integrating more empirical data to further refine the wet scavenging process in air quality modeling.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos15091070