Low Power Dendritic Computation for Wordspotting

In this paper, we demonstrate how a network of dendrites can be used to build the state decoding block of a wordspotter similar to a Hidden Markov Model (HMM) classifier structure. We present simulation and experimental data for a single line dendrite and also experimental results for a dendrite-bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of low power electronics and applications 2013-05, Vol.3 (2), p.73-98
Hauptverfasser: George, Suma, Hasler, Jennifer, Koziol, Scott, Nease, Stephen, Ramakrishnan, Shubha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we demonstrate how a network of dendrites can be used to build the state decoding block of a wordspotter similar to a Hidden Markov Model (HMM) classifier structure. We present simulation and experimental data for a single line dendrite and also experimental results for a dendrite-based classifier structure. This work builds on previously demonstrated building blocks of a neural network: the channel, synapses and dendrites using CMOS circuits. These structures can be used for speech and pattern recognition. The computational efficiency of such a system is >10 MMACs/μW as compared to Digital Systems which perform 10 MMACs/mW.
ISSN:2079-9268
2079-9268
DOI:10.3390/jlpea3020073