Learning Weighted Forest and Similar Structure for Image Super Resolution
Image super resolution (SR) based on example learning is a very effective approach to achieve high resolution (HR) image from image input of low resolution (LR). The most popular method, however, depends on either the external training dataset or the internal similar structure, which limits the qual...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-02, Vol.9 (3), p.543 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Image super resolution (SR) based on example learning is a very effective approach to achieve high resolution (HR) image from image input of low resolution (LR). The most popular method, however, depends on either the external training dataset or the internal similar structure, which limits the quality of image reconstruction. In the paper, we present a novel SR algorithm by learning weighted random forest and non-local similar structures. The initial HR image patches are obtained from a weighted forest model, which is established by calculating the approximate fitting error of the leaf nodes. The K-means clustering algorithm is exploited to get a non-local similar structure inside the initial HR image patches. In addition, a low rank constraint is imposed on the HR image patches in each cluster. We further apply the similar structure model to establish an effective regularization prior under a reconstruction-based SR framework. Comparing with current typical SR algorithms, the results of comprehensive experiments implemented on three publicly datasets show that peak signal-to-noise ratio (PSNR) has been effectively promoted by the presented SR approach, and a better visual effect has been realized. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9030543 |