Computing mod l Galois representations associated to modular forms for small primes
In this paper, we propose an algorithm for computing mod l Galois representations associated to modular forms of weight k when l < k-1. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute the mod l projective...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2023-01, Vol.8 (12), p.28766-28779 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose an algorithm for computing mod l Galois representations associated to modular forms of weight k when l < k-1. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute the mod l projective Galois representations associated to [[DELTA].sub.k] for k = 16, 20, 22, 26 and all the unexceptional primes l, with l < k-1. As an application, for k = 16, 20, 22, 26, we obtain the new bounds [B.sub.k] of n such that an ([[DELTA].sub.k]) [not equal to] 0 for all n < [B.sub.k]. Keywords: modular forms; mod l Galois representations; unexceptional primes; polynomials associated to modular Galois representations; Fourier coefficients of modular forms Mathematics Subject Classification: 11F80, 11F33, 11G30, 11G18 |
---|---|
ISSN: | 2473-6988 |
DOI: | 10.3934/math.20231473 |