Determination of Deployment Angle for the Optimum Operation of Solar Panels Used in a LEO Satellite

Solar panels are the primary sources of power in a satellite. Operating characteristics of the solar cells, such as current, voltage and generated power, depend on their operating temperatures and the amount of solar radiation received by the solar cells. Therefore, for optimum operation of the sola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:فصلنامه علوم و فناوری فضایی 2008-12, Vol.1 (2), p.1-8
Hauptverfasser: A. Anvari, M. Shahriyari, F. Farhani
Format: Artikel
Sprache:per
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar panels are the primary sources of power in a satellite. Operating characteristics of the solar cells, such as current, voltage and generated power, depend on their operating temperatures and the amount of solar radiation received by the solar cells. Therefore, for optimum operation of the solar cells, it is essential to control their temperatures within acceptable limits, and provide the maximum possible solar radiation for the solar cells. Solar panel configurations include fixed and deployable panels; the latter configuration being flexible, providing the possibility of sun tracking for maximum utilization of solar radiation. In this paper we have considered a cubic satellite, having four deployable solar panels on its lateral sides, which can be deployed at certain angle (called deployment angle) with respect to the satellite body. Four limiting values of beta angle (angle between solar vector and orbital plane) have been considered, and for each beta angle, various solar panel deployment angles have been studied. The amounts of radiations received by the cells for each deployment angle have been presented. The solar panels have been modeled and thermally analyzed, to determine temperatures of the solar cells at various beta angles, and for different panel deployment angles. Results show that for the beta angles considered, and the satellite under study, a 30° solar panel deployment angle presents the optimum conditions for the operation of the solar cells.
ISSN:2008-4560
2423-4516