Radar Position Estimation by Sequential Irradiation of ESM Receivers

In this article, a new technique for determination of 2D signal source (target) position is proposed. This novel approach, called the Inscribed Angle (InA), is based on measuring the time difference of sequential irradiation by the main beam of the target antenna’s radiation pattern, using Electroni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-06, Vol.21 (13), p.4430
Hauptverfasser: Hubáček, Petr, Veselý, Jiří, Olivová, Jana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a new technique for determination of 2D signal source (target) position is proposed. This novel approach, called the Inscribed Angle (InA), is based on measuring the time difference of sequential irradiation by the main beam of the target antenna’s radiation pattern, using Electronic Support Measures (ESM) receivers, assuming that the target antenna is rotating and that its angular velocity is constant. In addition, it is also assumed that the localization system operates in a LOS (Line of Sight) situation and that three time-synchronized sensors are placed arbitrarily across the area. The main contribution of the article is a complete description of the proposed localization method. That is, this paper demonstrates a geometric representation and an InA localization technique model. Analysis of the method’s accuracy is also demonstrated. The time of irradiation of the receiving station corresponds to the direction in which the maximum received signal strength (RSS) was measured. In order to achieve a certain degree of accuracy of the proposed positioning technique, a method was derived to increase the accuracy of the irradiation time estimation. Finally, extensive simulation was conducted to demonstrate the performance and accuracy of our positioning method.
ISSN:1424-8220
1424-8220
DOI:10.3390/s21134430