QM/MM calculations with deMon2k

The density functional code deMon2k employs a fitted density throughout (Auxiliary Density Functional Theory), which offers a great speed advantage without sacrificing necessary accuracy. Powerful Quantum Mechanical/Molecular Mechanical (QM/MM) approaches are reviewed. Following an overview of the b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2015-03, Vol.20 (3), p.4780-4812
Hauptverfasser: Salahub, Dennis R, Noskov, Sergei Yu, Lev, Bogdan, Zhang, Rui, Ngo, Van, Goursot, Annick, Calaminici, Patrizia, Köster, Andreas M, Alvarez-Ibarra, Aurelio, Mejía-Rodríguez, Daniel, Řezáč, Jan, Cailliez, Fabien, de la Lande, Aurélien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The density functional code deMon2k employs a fitted density throughout (Auxiliary Density Functional Theory), which offers a great speed advantage without sacrificing necessary accuracy. Powerful Quantum Mechanical/Molecular Mechanical (QM/MM) approaches are reviewed. Following an overview of the basic features of deMon2k that make it efficient while retaining accuracy, three QM/MM implementations are compared and contrasted. In the first, deMon2k is interfaced with the CHARMM MM code (CHARMM-deMon2k); in the second MM is coded directly within the deMon2k software; and in the third the Chemistry in Ruby (Cuby) wrapper is used to drive the calculations. Cuby is also used in the context of constrained-DFT/MM calculations. Each of these implementations is described briefly; pros and cons are discussed and a few recent applications are described briefly. Applications include solvated ions and biomolecules, polyglutamine peptides important in polyQ neurodegenerative diseases, copper monooxygenases and ultra-rapid electron transfer in cryptochromes.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules20034780