Validation of the burnup code MOTIVE with respect to fuel assembly decay heat data

The burn-up code MOTIVE is a 3D code for fuel assembly inventory determination developed at GRS in recent years. It modularly couples an external Monte Carlo neutron transport code to the in-house inventory code VENTINA. In the present publication, we report on the validation of MOTIVE with respect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in energy research 2023-03, Vol.11
Hauptverfasser: Hannstein, Volker, Behler, Matthias, Henry, Romain, Sommer, Fabian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The burn-up code MOTIVE is a 3D code for fuel assembly inventory determination developed at GRS in recent years. It modularly couples an external Monte Carlo neutron transport code to the in-house inventory code VENTINA. In the present publication, we report on the validation of MOTIVE with respect to full-assembly decay heat measurements of light water reactor fuel. For this purpose, measurements on pressurized water reactor and boiling water reactor fuel assemblies from different facilities have been analyzed with MOTIVE. The calculated decay heat values are compared to the measured data in terms of absolute and relative deviations. These results are discussed and compared to other published validation analyses. Moreover, the observed deviations between measurements and calculations are analyzed further by taking into account the results of the validation of nuclide inventory determination with MOTIVE. The influence of possible biases of calculated nuclide densities important to decay heat at the given decay times are investigated and discussed.
ISSN:2296-598X
2296-598X
DOI:10.3389/fenrg.2023.1083249