Giant magnetocaloric effect in a rare-earth-free layered coordination polymer at liquid hydrogen temperatures

Magnetic refrigeration, which utilizes the magnetocaloric effect, can provide a viable alternative to the ubiquitous vapor compression or Joule-Thompson expansion methods of refrigeration. For applications such as hydrogen gas liquefaction, the development of magnetocaloric materials that perform we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-10, Vol.15 (1), p.8559-9, Article 8559
Hauptverfasser: Levinsky, J. J. B., Beckmann, B., Gottschall, T., Koch, D., Ahmadi, M., Gutfleisch, O., Blake, G. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic refrigeration, which utilizes the magnetocaloric effect, can provide a viable alternative to the ubiquitous vapor compression or Joule-Thompson expansion methods of refrigeration. For applications such as hydrogen gas liquefaction, the development of magnetocaloric materials that perform well in moderate magnetic fields without using rare-earth elements is highly desirable. Here we present a thorough investigation of the structural and magnetocaloric properties of a novel layered organic-inorganic hybrid coordination polymer Co 4 (OH) 6 (SO 4 ) 2 [enH 2 ] (enH 2 = ethylenediammonium). Heat capacity, magnetometry and direct adiabatic temperature change measurements using pulsed magnetic fields reveal a field-dependent ferromagnetic second-order phase transition at 10 K < T C  
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-52837-x