Zearalenone induces mitochondria-associated endoplasmic reticulum membranes dysfunction in piglet Sertoli cells based on endoplasmic reticulum stress

Zearalenone (ZEA) is an estrogen-like mycotoxin, which mainly led to reproductive toxicity. The study aimed to investigate the molecular mechanism of ZEA-induced dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAM) in piglet Sertoli cells (SCs) via the endoplasmic reticulum s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecotoxicology and environmental safety 2023-04, Vol.254, p.114710-114710, Article 114710
Hauptverfasser: Ma, Li, Hai, Sirao, Wang, Chenlong, Chen, Chuangjiang, Rahman, Sajid Ur, Zhao, Chang, Bazai, Mansoor Ahmed, Feng, Shibin, Wang, Xichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zearalenone (ZEA) is an estrogen-like mycotoxin, which mainly led to reproductive toxicity. The study aimed to investigate the molecular mechanism of ZEA-induced dysfunction of mitochondria-associated endoplasmic reticulum membranes (MAM) in piglet Sertoli cells (SCs) via the endoplasmic reticulum stress (ERS) pathway. In this study, SCs were used as a research object that was exposed to ZEA, and ERS inhibitor 4-Phenylbutyrate acid (4-PBA) was used as a reference. The results showed that ZEA damaged cell viability and increased Ca2+ levels; damaged the structure of MAM; up-regulated the relative mRNA and protein expression of glucose-regulated protein 75 (Grp75) and mitochondrial Rho-GTPase 1 (Miro1), while inositol 1,4,5-trisphosphate receptor (IP3R), voltage-dependent anion channel 1 (VDAC1), mitofusin2 (Mfn2) and phosphofurin acidic cluster protein 2 (PACS2) were down-regulated. After a 3 h 4-PBA-pretreatment, ZEA was added for mixed culture. The results of 4-PBA pretreatment showed that inhibition of ERS reduced the cytotoxicity of ZEA against piglet SCs. Compared with the ZEA group, inhibition of ERS increased cell viability and decreased Ca2+ levels; restored the structural damage of MAM; down-regulated the relative mRNA and protein expression of Grp75 and Miro1; and up-regulated the relative mRNA and protein expression of IP3R, VDAC1, Mfn2, and PACS2. In conclusion, ZEA can induce MAM dysfunction in piglet SCs via the ERS pathway, whereas ER can regulate mitochondria through MAM. [Display omitted] •Zearalenone reduced the viability of piglet Sertoli cells.•Zearalenone changed Ca2+ homeostasis in piglet Sertoli cells.•Zearalenone caused mitochondria-associated endoplasmic reticulum membranes dysfunction in piglet Sertoli cells.•Endoplasmic reticulum could regulate mitochondria through mitochondria-associated endoplasmic reticulum membranes.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2023.114710