Modeling Required Driver Attention Level Based On Environmental Risk Factors Using Deep Convolutional Neural Networks

Understanding the level of environmental risk using vehicle-mounted camera traffic scenes is useful in advanced driver assistance systems (ADAS) to improve vehicle safety. We propose a fast, memory-efficient computer vision based environmental risk perception method using a weakly supervised convolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Automotive Engineering 2021, Vol.12(4), pp.125-133
Hauptverfasser: Withanawasam, Jayani, Javanmardi, Ehsan, Gu, Yanlei, Kamijo, Shunsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the level of environmental risk using vehicle-mounted camera traffic scenes is useful in advanced driver assistance systems (ADAS) to improve vehicle safety. We propose a fast, memory-efficient computer vision based environmental risk perception method using a weakly supervised convolutional neural network-based classifier. We use traffic scenes from Berkley deep drive dataset to evaluate the proposed method. Experimental results demonstrate that the proposed method correctly classifies required driver attention levels by considering multiple environmental risk factors. Further, we use class activation mapping to demonstrate that the proposed network is capable of identifying the underlying environmental risk factors.
ISSN:2185-0984
2185-0992
DOI:10.20485/jsaeijae.12.4_125