Grapevine response to a Dittrichia viscosa extract and a Bacillus velezensis strain

The present study aims to evaluate the response of the three Mediterranean local grapevines 'Garnacha Blanca', 'Garnacha Tinta', and 'Macabeo' to treatments with biocontrol products, namely a botanical extract (Akivi, extract) and a beneficial microorganism ( UdG, ). A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in plant science 2022-12, Vol.13, p.1075231-1075231
Hauptverfasser: Ramos, Mélina, Daranas, Núria, Llugany, Mercè, Tolrà, Roser, Montesinos, Emilio, Badosa, Esther
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study aims to evaluate the response of the three Mediterranean local grapevines 'Garnacha Blanca', 'Garnacha Tinta', and 'Macabeo' to treatments with biocontrol products, namely a botanical extract (Akivi, extract) and a beneficial microorganism ( UdG, ). A combination of transcriptomics and metabolomics approaches were chosen in order to study grapevine gene expression and to identify gene marker candidates, as well as, to determine differentially concentrated grapevine metabolites in response to biocontrol product treatments. Grapevine plants were cultivated in greenhouse under controlled conditions and submitted to the treatments. Thereafter, leaves were sampled 24h after treatment to carry out the gene expression study by RT-qPCR for the three cultivars and by RNA-sequencing for 'Garnacha Blanca'. Differentially expressed genes (DEGs) were investigated for both treatments and highly influenced DEGs were selected to be tested in the three cultivars as treatment gene markers. In addition, the extraction of leaf components was performed to quantify metabolites, such as phytohormones, organic acids, and phenols. Considering the upregulated and downregulated genes and the enhanced metabolites concentrations, the treatments had an effect on jasmonic acid, ethylene, and phenylpropanoids defense pathways. In addition, several DEG markers were identified presenting a stable overexpression after the treatments in the three grapevine cultivars. These gene markers could be used to monitor the activity of the products in field treatments. Further research will be necessary to confirm these primary results under field conditions.
ISSN:1664-462X
1664-462X
DOI:10.3389/fpls.2022.1075231