New DC conductivity spectra of Zn–Al layered double hydroxide (Zn–Al–NO 3 –LDH) and its calcined product of ZnO phase

Zn–Al–NO3–LDH nanostructure was synthesized via the coprecipitation method at molar ratio Zn2+/Al3+ = 4 and pH = 7. The resultant sample was thermally treated at calcined temperatures of 50, 100, 150, 200, 250 and 300 °C. The layered structure of the Zn–Al–NO3–LDH samples was stable below the calcin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS materials science 2017-01, Vol.4 (3), p.670-679
Hauptverfasser: Ahmed Ali Ahmed, Abdullah, Abidin Talib, Zainal, Zobir Hussein, Mohd, Abdullah Ahmed Al-Magdashi, Yusra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zn–Al–NO3–LDH nanostructure was synthesized via the coprecipitation method at molar ratio Zn2+/Al3+ = 4 and pH = 7. The resultant sample was thermally treated at calcined temperatures of 50, 100, 150, 200, 250 and 300 °C. The layered structure of the Zn–Al–NO3–LDH samples was stable below the calcination temperature 200 °C as shown in powder X-ray diffraction (PXRD) patterns of calcined samples. The calcination products showed a collapse of LDH structure and ZnO phase was formed at 200 °C and above. The dielectric spectroscopy of LDH was explained using anomalous low frequency dispersion (ALFD) due to the low mobility of LDH carriers. The conductivity spectra of LDH can be theoretically described according to the effective phase within the calcination products of LDH. In the comparison with previously researches, this study presented higher values of DC conductivity for all studied samples.
ISSN:2372-0484
DOI:10.3934/matersci.2017.3.670