Design and Validation of a Monte Carlo Method for the Implementation of Noninvasive Wearable Devices for HbA1c Estimation Considering the Skin Effect
To diagnose diabetes early or to maintain stable blood glucose levels in diabetics, blood glucose levels should be frequently checked. However, the only way to check blood glucose levels regularly is to use invasive methods, such as pricking the fingertip or using a minimally invasive patch. These i...
Gespeichert in:
Veröffentlicht in: | Micromachines (Basel) 2024-08, Vol.15 (9), p.1067 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To diagnose diabetes early or to maintain stable blood glucose levels in diabetics, blood glucose levels should be frequently checked. However, the only way to check blood glucose levels regularly is to use invasive methods, such as pricking the fingertip or using a minimally invasive patch. These invasive methods pose several problems, including being painful and potentially causing secondary infections. This study focuses on noninvasively measuring glycated hemoglobin (HbA1c) using PPG signals. In particular, the study relates to a method and a hardware design technology for removing noise that may be present in a PPG signal due to skin contact with a noninvasive HbA1c measurement device. The proposed HbA1c measurement device consists of the first sensor (PPG sensor) module including an optical barrier and the second sensor (cylindrical sensor) module for removing the skin effect. We have developed a Monte Carlo method to implement accurate, noninvasive HbA1c measurement by considering different skin properties among different subjects. Implementing this model in wearable devices will allow end users to not only monitor their glycated hemoglobin levels but also control diabetes with higher accuracy without needing any blood samples. This will be a groundbreaking advancement in modern wearable medical devices. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi15091067 |