Signal Identification of Wire Breaking in Bridge Cables Based on Machine Learning

With the booming development of bridge construction, bridge operation and maintenance have always been major issues to ensure the safety of the community. Affected by the long-term service of bridges and natural factors, the safety and durability of cables can be threatened. Cables are critical stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-10, Vol.10 (19), p.3690
Hauptverfasser: Li, Guangming, Ding, Heming, Li, Yaohan, Li, Chun-Yin, Lee, Chi-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the booming development of bridge construction, bridge operation and maintenance have always been major issues to ensure the safety of the community. Affected by the long-term service of bridges and natural factors, the safety and durability of cables can be threatened. Cables are critical stress-bearing elements of large bridges such as cable-stayed bridges. Realizing the health monitoring of bridge cables is the key to ensuring the normal operation of bridges. Acoustic emission (AE) is a dynamic nondestructive testing method that is increasingly used in the local monitoring of bridge cables. In this paper, a testbed is described for generating the acoustic emission signals for signal identification testing with machine learning (ML) models. Owing to the limited number of measured signals being available, an algorithm is proposed to simulate acoustic emission signals for model training. A multi-angle feature extraction method is proposed to extract the acoustic emission signals and construct a comprehensive feature vector to characterize the acoustic emission signals. Seven ML models are trained with the simulated acoustic emission signals. Long short-term memory (LSTM) has been specially applied for deep learning demonstration which requires a large amount of training data. As all machine learning models (including LSTM) provide desired performance, it shows that the proposed approach of simulating acoustic emission signals can be effective.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10193690