Research on Complex Classification Algorithm of Breast Cancer Chip Based on SVM-RFE Gene Feature Screening

Screening and classification of characteristic genes is a complex classification problem, and the characteristic sequences of gene expression show high-dimensional characteristics. How to select an effective gene screening algorithm is the main problem to be solved by analyzing gene chips. The combi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2020-06, Vol.2020 (2020), p.1-12
Hauptverfasser: Chen, Guobin, Li, Shijin, Xie, Xianzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Screening and classification of characteristic genes is a complex classification problem, and the characteristic sequences of gene expression show high-dimensional characteristics. How to select an effective gene screening algorithm is the main problem to be solved by analyzing gene chips. The combination of KNN, SVM, and SVM-RFE is selected to screen complex classification problems, and a new method to solve complex classification problems is provided. In the process of gene chip pretreatment, LogFC and P value equivalents in the gene expression matrix are screened, and different gene features are screened, and then SVM-RFE algorithm is used to sort and screen genes. Firstly, the characteristics of gene chips are analyzed and the number between probes and genes is counted. Clustering analysis among each sample and PCA classification analysis of different samples are carried out. Secondly, the basic algorithms of SVM and KNN are tested, and the important indexes such as error rate and accuracy rate of the algorithms are tested to obtain the optimal parameters. Finally, the performance indexes of accuracy, precision, recall, and F1 of several complex classification algorithms are compared through the complex classification of SVM, KNN, KNN-PCA, SVM-PCA, SVM-RFE-SVM, and SVM-RFE-KNN at P=0. 01,0.05,0.001. SVM-RFE-SVM has the best classification effect and can be used as a gene chip classification algorithm to analyze the characteristics of genes.
ISSN:1076-2787
1099-0526
DOI:10.1155/2020/1342874