First validation of a model-based hepatic percutaneous microwave ablation planning on a clinical dataset
A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actual ablation ground truth from a clinical dataset in liver...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2023-10, Vol.13 (1), p.16862-16862, Article 16862 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A model-based planning tool, integrated in an imaging system, is envisioned for CT-guided percutaneous microwave ablation. This study aims to evaluate the biophysical model performance, by comparing its prediction retrospectively with the actual ablation ground truth from a clinical dataset in liver. The biophysical model uses a simplified formulation of heat deposition on the applicator and a heat sink related to vasculature to solve the bioheat equation. A performance metric is defined to assess how the planned ablation overlaps the actual ground truth. Results demonstrate superiority of this model prediction compared to manufacturer tabulated data and a significant influence of the vasculature cooling effect. Nevertheless, vasculature shortage due to branches occlusion and applicator misalignment due to registration error between scans affects the thermal prediction. With a more accurate vasculature segmentation, occlusion risk can be estimated, whereas branches can be used as liver landmarks to improve the registration accuracy. Overall, this study emphasizes the benefit of a model-based thermal ablation solution in better planning the ablation procedures. Contrast and registration protocols must be adapted to facilitate its integration into the clinical workflow. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-42543-x |