Uniform Second-Order Difference Method for a Singularly Perturbed Three-Point Boundary Value Problem
We consider a singularly perturbed one-dimensional convection-diffusion three-point boundary value problem with zeroth-order reduced equation. The monotone operator is combined with the piecewise uniform Shishkin-type meshes. We show that the scheme is second-order convergent, in the discrete maximu...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2010-01, Vol.2010 (1), p.102484-102484 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a singularly perturbed one-dimensional convection-diffusion three-point boundary value problem with zeroth-order reduced equation. The monotone operator is combined with the piecewise uniform Shishkin-type meshes. We show that the scheme is second-order convergent, in the discrete maximum norm, independently of the perturbation parameter except for a logarithmic factor. Numerical examples support the theoretical results. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/1687-1847-2010-102484 |