Diagnostics of plasma jets in the solar corona

The paper discusses the diagnostics of plasma jets in the solar corona with the use of data from modern space- and ground-based telescopes observing the Sun in the extreme ultraviolet (EUV) and micro- wave bands. We examine observational parameters of EUV and radio emission in events associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar-terrestrial physics 2021-06, Vol.7 (2), p.3-10
Hauptverfasser: Anfinogentov, Sergey, Kaltman, Tatyana, Stupishin, Alexey, Nakariakov, Valery, Loukitcheva, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper discusses the diagnostics of plasma jets in the solar corona with the use of data from modern space- and ground-based telescopes observing the Sun in the extreme ultraviolet (EUV) and micro- wave bands. We examine observational parameters of EUV and radio emission in events associated with plasma jets, depending on the mechanism of formation, initiation conditions, and evolution of the jets. The opportunities provided by the study of plasma jets, which relies on simultaneous observations in different bands, are highlighted. For a number of jets, we have measured their primary parameters; and in this paper we present preliminary results of statistical processing of the data obtained. Microwave observations of several specific events, made by ground-based instruments RATAN-600, SRH, and Nobeyama Radioheliograph, are considered in detail. The diagnostic capabilities of these instruments for studying coronal jets are shown. To analyze the three-dimensional structure of the coronal magnetic field, we have used SDO/HMI data, which allowed for the reconstruction of the field in the lower corona. The information gained is compared with the results of diagnostics of the magnetic field at the base of the corona according to RATAN-600 data. The purpose of the methods developed is to determine the physical mechanisms responsible for the generation, collimation, and dynamics of plasma jets in the solar atmosphere.
ISSN:2500-0535
2500-0535
DOI:10.12737/stp-72202101