Gene expression drives the evolution of dominance

Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-07, Vol.9 (1), p.2750-11, Article 2750
Hauptverfasser: Huber, Christian D., Durvasula, Arun, Hancock, Angela M., Lohmueller, Kirk E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels. Dominance is difficult to measure in natural populations as it is confounded with fitness. Here, Huber et al. developed a new approach to co-estimate dominance and selection coefficients, and found that the observed relationship is best fit by a new model of dominance based on gene expression level.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-05281-7