Perturbation compactness and uniqueness for a class of conformally compact Einstein manifolds

In this paper, we establish compactness results for some classes of conformally compact Einstein metrics defined on manifolds of dimension d ≥ 4. In the special case when the manifold is the Euclidean ball with the unit sphere as the conformal infinity, the existence of such class of metrics has bee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced nonlinear studies 2024-04, Vol.24 (1), p.247-278
Hauptverfasser: Chang, Sun-Yung Alice, Ge, Yuxin, Jin, Xiaoshang, Qing, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish compactness results for some classes of conformally compact Einstein metrics defined on manifolds of dimension d ≥ 4. In the special case when the manifold is the Euclidean ball with the unit sphere as the conformal infinity, the existence of such class of metrics has been established in the earlier work of C. R. Graham and J. Lee (“Einstein metrics with prescribed conformal infinity on the ball,” , vol. 87, no. 2, pp. 186–225, 1991). As an application of our compactness result, we derive the uniqueness of the Graham–Lee metrics. As a second application, we also derive some gap theorem, or equivalently, some results of non-existence CCE fill-ins.
ISSN:2169-0375
1536-1365
2169-0375
DOI:10.1515/ans-2023-0124