Predicting Profile Soil Properties with Reflectance Spectra via Bayesian Covariate-Assisted External Parameter Orthogonalization

In situ, diffuse reflectance spectroscopy (DRS) profile soil sensors have the potential to provide both rapid and high-resolution prediction of multiple soil properties for precision agriculture, soil health assessment, and other applications related to environmental protection and agronomic sustain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2018-11, Vol.18 (11), p.3869
Hauptverfasser: S Veum, Kristen, A Parker, Paul, A Sudduth, Kenneth, H Holan, Scott
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In situ, diffuse reflectance spectroscopy (DRS) profile soil sensors have the potential to provide both rapid and high-resolution prediction of multiple soil properties for precision agriculture, soil health assessment, and other applications related to environmental protection and agronomic sustainability. However, the effects of soil moisture, other environmental factors, and artefacts of the in-field spectral data collection process often hamper the utility of in situ DRS data. Various processing and modeling techniques have been developed to overcome these challenges, including external parameter orthogonalization (EPO) transformation of the spectra. In addition, Bayesian modeling approaches may improve prediction over traditional partial least squares (PLS) regression. The objectives of this study were to predict soil organic carbon (SOC), total nitrogen (TN), and texture fractions using a large, regional dataset of in situ profile DRS spectra and compare the performance of (1) traditional PLS analysis, (2) PLS on EPO-transformed spectra (PLS-EPO), (3) PLS-EPO with the Bayesian Lasso (PLS-EPO-BL), and (4) covariate-assisted PLS-EPO-BL models. In this study, soil cores and in situ profile DRS spectrometer scans were obtained to ~1 m depth from 22 fields across Missouri and Indiana, USA. In the laboratory, soil cores were split by horizon, air-dried, and sieved (
ISSN:1424-8220
1424-8220
DOI:10.3390/s18113869