On Qi’s Normalized Remainder of Maclaurin Power Series Expansion of Logarithm of Secant Function
In the study, the authors introduce Qi’s normalized remainder of the Maclaurin power series expansion of the function lnsecx=−lncosx; in view of a monotonicity rule for the ratio of two Maclaurin power series and by virtue of the logarithmic convexity of the function (2x−1)ζ(x) on (1,∞), they prove...
Gespeichert in:
Veröffentlicht in: | Axioms 2024-12, Vol.13 (12), p.860 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the study, the authors introduce Qi’s normalized remainder of the Maclaurin power series expansion of the function lnsecx=−lncosx; in view of a monotonicity rule for the ratio of two Maclaurin power series and by virtue of the logarithmic convexity of the function (2x−1)ζ(x) on (1,∞), they prove the logarithmic convexity of Qi’s normalized remainder; with the aid of a monotonicity rule for the ratio of two Maclaurin power series, the authors present the monotonic property of the ratio between two Qi’s normalized remainders. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms13120860 |