A discrete side-lobe clutter recognition method based on sliding filter response loss for space-based radar

Different from ground-based or airborne early warning radar, space-based radar (SBR) possesses large coverage capability. As a result, several discrete strong scatter points from the antenna side-lobe shares the same feature with the real targets in range-Doppler domain, which leads to false alarms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in physics 2023-02, Vol.11
Hauptverfasser: Li, Yu, Yang, Wenhai, Li, Qi, Chen, Jinming, Wang, Weiwei, Li, Caipin, Duan, Chongdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Different from ground-based or airborne early warning radar, space-based radar (SBR) possesses large coverage capability. As a result, several discrete strong scatter points from the antenna side-lobe shares the same feature with the real targets in range-Doppler domain, which leads to false alarms when conducting constant false alarm rate (CFAR) detection process, and the detection performance with regard to SBR deteriorates seriously. In this paper, a discrete side-lobe clutter recognition method based on sliding filter response loss is proposed for space-based radar. Firstly, considering both the echo inhomogeneity and the limited degrees of freedom (DOFs) after dimension-reduced space-time adaptive processing (STAP), the sliding window design strategy is employed to segment range cells for the observation scene. Then, the images related to different range segments are registered after clutter suppression, in this way, the candidate target parameters, including the position information and the amplitude information are counted. On this basis, the reliable recognition scheme between the real target and the discrete side-lobe clutter can be realized by comparing these filter response losses. Compared with recent works, experimental results based on real measured data show that the proposed method significantly improves the fault-tolerant discrimination ability, which possesses high robustness in algorithm performance as well as good prospect in engineering application.
ISSN:2296-424X
2296-424X
DOI:10.3389/fphy.2023.1142154