Control of Multistability in an Erbium-Doped Fiber Laser by an Artificial Neural Network: A Numerical Approach

A recurrent wavelet first-order neural network (RWFONN) is proposed to select a desired attractor in a multistable erbium-doped fiber laser (EDFL). A filtered error algorithm is used to classify coexisting EDFL states and train RWFONN. The design of the intracavity laser power controller is develope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2022-09, Vol.10 (17), p.3140
Hauptverfasser: Magallón, Daniel A, Jaimes-Reátegui, Rider, García-López, Juan H, Huerta-Cuellar, Guillermo, López-Mancilla, Didier, Pisarchik, Alexander N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recurrent wavelet first-order neural network (RWFONN) is proposed to select a desired attractor in a multistable erbium-doped fiber laser (EDFL). A filtered error algorithm is used to classify coexisting EDFL states and train RWFONN. The design of the intracavity laser power controller is developed according to the RWFONN states with the block control linearization technique and the super-twisting control algorithm. Closed-loop stability analysis is performed using the boundedness of synaptic weights. The efficiency of the control method is demonstrated through numerical simulations.
ISSN:2227-7390
2227-7390
DOI:10.3390/math10173140