Feasibility of quantitative relaxometry for prostate target localization and response assessment in magnetic resonance-guided online adaptive stereotactic body radiotherapy

Multiparametric magnetic resonance imaging (MRI) is known to provide predictors for malignancy and treatment outcome. The inclusion of these datasets in workflows for online adaptive planning remains under investigation. We demonstrate the feasibility of longitudinal relaxometry in online MR-guided...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and imaging in radiation oncology 2024-10, Vol.32, p.100678, Article 100678
Hauptverfasser: Subashi, Ergys, LoCastro, Eve, Burleson, Sarah, Apte, Aditya, Zelefsky, Michael, Tyagi, Neelam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multiparametric magnetic resonance imaging (MRI) is known to provide predictors for malignancy and treatment outcome. The inclusion of these datasets in workflows for online adaptive planning remains under investigation. We demonstrate the feasibility of longitudinal relaxometry in online MR-guided adaptive stereotactic body radiotherapy (SBRT) to the prostate and dominant intra-prostatic lesion (DIL). Fifty patients with intermediate-risk prostate cancer were included in the study. The clinical target volume (CTV) was defined as the prostate gland plus 1 cm of seminal vesicles. The gross tumor volume (GTV) was defined as the DIL identified on multiparametric MRI. Online adaptive radiotherapy was delivered in a 1.5 T MR-Linac using a prescription of 800 cGy/900 cGy × 5 fractions to the CTV + 3 mm/GTV + 2 mm. Relaxometry and diffusion-weighted imaging were implemented using clinically available sequences. Test-retest measurements were performed in eight patients, at each treatment fraction. Bias and uncertainty in relaxometry measurements were also assessed using a reference phantom. The bias in longitudinal/transverse relaxation times was negligible while uncertainty was within 3 %. Test-retest measurements demonstrate that bias/uncertainty in patient T1 and T2 were comparable to bias/uncertainty estimated in the phantom. Mean T1 and T2 relaxation were significantly different between the prostate and DIL. The correlation between T1, T2, and diffusion was significant in the DIL, but not in the prostate. During treatment, mean T1 in the DIL approaches mean T1 in the prostate. Longitudinal relaxometry for online MR-guided adaptive SBRT is feasible in a high-field MR-Linac and may provide complementary information for target delineation and response assessment.
ISSN:2405-6316
2405-6316
DOI:10.1016/j.phro.2024.100678