Combination of Radar and Rain Gauge Information to Map the Snowy Region in Jeju Island, Korea: A Case Study
Hallasan Mountain is located at the center of Jeju Island, Korea. Even though Hallasan Mountain has a height of just 1,950 m, the temperature during the winter decreases below −20 degrees Celsius. On the contrary, the temperature on the coastal areas remains just above freezing. Therefore, large sno...
Gespeichert in:
Veröffentlicht in: | Advances in meteorology 2019-01, Vol.2019 (2019), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hallasan Mountain is located at the center of Jeju Island, Korea. Even though Hallasan Mountain has a height of just 1,950 m, the temperature during the winter decreases below −20 degrees Celsius. On the contrary, the temperature on the coastal areas remains just above freezing. Therefore, large snowfalls in the mountain and rainfall in the coastal areas are very common in Jeju Island. Most of the rain gauges are available around highly populated coastal areas, and snow measurements are available at just four locations on the coastal areas. Therefore, it is practically impossible to distinguish the rainfall and snowfall in Jeju Island. Fortunately, two radars (Seongsan and Gosan radars) operate on Jeju Island, which fully covers Hallasan Mountain. This study proposes a method of using both the radar and rain gauge information to map the snowy region in Jeju Island, including Hallasan Mountain. As a first step, this study analyzed the Z-R and Z-S relationships to derive a fixed threshold of radar reflectivity to separate snowfall from rainfall, and, in the second step, this study additionally considered the observed rain rate information to implement the problem of using the fixed threshold. This proposed method was applied to radar reflectivity data collected during November 1, 2014, to April 30, 2015, and the results indicate that the method considering both the radar and rain gauge information was satisfactory. This method also showed good performance, especially when the rain rate was very low. |
---|---|
ISSN: | 1687-9309 1687-9317 |
DOI: | 10.1155/2019/3572431 |