siRNA-Mediated B7H7 Knockdown in Gastric Cancer Lysate-Loaded Dendritic Cells Amplifies Expansion and Cytokine Secretion of Autologous T Cells
Gastric cancer, ranked as the fifth most common cancer worldwide, presents multiple treatment challenges. These obstacles often arise due to cancer stem cells, which are associated with recurrence, metastasis, and drug resistance. While dendritic cell (DC)-based immunotherapy has shown promise as a...
Gespeichert in:
Veröffentlicht in: | Biomedicines 2023-12, Vol.11 (12), p.3212 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gastric cancer, ranked as the fifth most common cancer worldwide, presents multiple treatment challenges. These obstacles often arise due to cancer stem cells, which are associated with recurrence, metastasis, and drug resistance. While dendritic cell (DC)-based immunotherapy has shown promise as a therapeutic strategy, its efficacy can be limited by the tumor microenvironment and certain inhibitory immune checkpoint molecules, such as B7H7. SiRNA-medicated knockdown of B7H7 in tumor cell lysate-pulsed DCs can increase cytokine secretion and autologous T lymphocyte expansion. This study aimed to evaluate the impact of B7H7 suppression in gastric cancer cell lysate-pulsed DCs on the stimulatory potential of autologous CD3
T lymphocytes.
Peripheral blood mononuclear cells (PBMCs) were isolated and monocytes were obtained; then, they were differentiated to immature DCs (iDCs) by GM-CSF and IL-4. Tumor cell lysates from human gastric cancer cell lines were harvested, and iDCs were transformed into mature DCs (mDCs) by stimulating iDCs with tumor cell lysate and lipopolysaccharide. B7H7-siRNA was delivered into mDCs using electroporation, and gene silencing efficiency was assessed. The phenotypic characteristics of iDCs, mDCs, and B7H7-silenced mDCs were evaluated using specific surface markers, an inverted light microscope, and flow cytometry. CD3
T cells were isolated via magnetically activated cell sorting. They were labeled with CFSE dye and co-cultured with mDCs and B7H7-silenced mDCs to evaluate their ability to induce T-cell proliferation. T-cell proliferation was assessed using flow cytometry. The concentration of TGF-β, IL-4, and IFN-γ secreted from CD3
T cells in the co-cultured supernatant was evaluated to investigate the cytokine secretory activity of the cells.
Transfection of B7H7 siRNA into mDCs was performed in optimal conditions, and the siRNA transfection effectively reduced B7H7 mRNA expression in a dose-dependent manner. SiRNA-mediated B7H7 knockdown in mDCs enhanced maturation and activation of the DCs, as demonstrated by an increased surface expression of CD11c, CD86, and CD40. Co-culture experiments revealed that B7H7-silenced mDCs had more capacity to induce T cell proliferation compared to non-transfected mDCs. The cytokine production patterns of T cells were also altered. Upon examining the levels of TGF-β, IL-4, and IFN-γ released by CD3
T cells in the co-culture supernatant, we found that silencing B7H7 in mDCs resulted in a rise in |
---|---|
ISSN: | 2227-9059 2227-9059 |
DOI: | 10.3390/biomedicines11123212 |