In vitro growth and indoleacetic acid production by Mesorhizobium loti SEMIA806 and SEMIA816 under the influence of copper ions

The indoleacetic acid produced by symbiotic bacteria is an important phytohormone signaling microbe-plant interaction, being therefore essential for rhizoremediation. In this study, the effect of different concentrations of copper ions on the bacterial growth and indoleacetic acid production was inv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbiology research 2017-11, Vol.8 (2), p.7302-7302
Hauptverfasser: Vieira, Jéssica Dutra, Da Silva, Paulo Roberto Diniz, Stefenon, Valdir Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The indoleacetic acid produced by symbiotic bacteria is an important phytohormone signaling microbe-plant interaction, being therefore essential for rhizoremediation. In this study, the effect of different concentrations of copper ions on the bacterial growth and indoleacetic acid production was investigated in two strains of Mesorhizobium loti in in vitro conditions, aiming to determine critical concentrations of this heavy metal for rhizoremediation of contaminated soils using this bacterium. The experiment consisted on a control culture without copper and three treatments supplemented with 10 mg.L-1, 20 mg.L-1 or 50 mg.L-1 of CuSO4. For both strains, the growth stopped after 48h and no significant difference was observed across treatments. The production of indoleacetic acid by the control treatment without copper was significantly higher in comparison to the copper- containing treatments. Mesorhizobium loti SEMIA806 and SEMIA816 are resistant to up to 50 mg.L-1 of CuSO4 in the culture medium, presenting effective growth. The synthesis of indoleacetic acid was strongly reduced but not excluded by ions copper in the medium. So, it is expected that environmental copper found in the soil up to the concentration of 50 mg.L-1 will not preclude the symbiotic interaction between M. loti and leguminous host plant in rhizoremediation enterprises.
ISSN:2036-7473
2036-7481
DOI:10.4081/mr.2017.7302