Replacing Pyridine with Pyrazine in Molecular Cobalt Catalysts: Effects on Electrochemical Properties and Aqueous H2 Generation
Four new molecular Co(II)tetrapyridyl complexes were synthesized and evaluated for their activity as catalysts for proton reduction in aqueous environments. The pyridine groups around the macrocycle were substituted for either one or two pyrazine groups. Single crystal X-ray analysis shows that the...
Gespeichert in:
Veröffentlicht in: | Catalysts 2021-01, Vol.11 (1), p.75 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Four new molecular Co(II)tetrapyridyl complexes were synthesized and evaluated for their activity as catalysts for proton reduction in aqueous environments. The pyridine groups around the macrocycle were substituted for either one or two pyrazine groups. Single crystal X-ray analysis shows that the pyrazine groups have minimal impact on the Co(II)–N bond lengths and molecular geometry in general. X-band EPR spectroscopy confirms the Co(II) oxidation state and the electronic environment of the Co(II) center are only very slightly perturbed by the substitution of pyrazine groups around the macrocycle. The substitution of pyrazine groups has a substantial impact on the observed metal- and ligand-centered reduction potentials as well as the overall H2 catalytic activity in a multimolecular system using the [Ru(2,2′-bipyridine)3]Cl2 photosensitizer and ascorbic acid as a sacrificial electron donor. The results reveal interesting trends between the H2 catalytic activity for each catalyst and the driving force for electron transfer between either the reduced photosensitizer to catalyst step or the catalyst to proton reduction step. The work presented here showcases how even the difference of a single atom in a molecular catalyst can have an important impact on activity and suggests a pathway to optimize the photocatalytic activity and stability of molecular systems. |
---|---|
ISSN: | 2073-4344 2073-4344 |
DOI: | 10.3390/catal11010075 |